Sistem bilangan biner

Telah di Baca 1712399 kali

Sistem bilangan biner atau sistem bilangan basis dua adalah sebuah sistem penulisan angka dengan menggunakan dua simbol yaitu 0 dan 1. Sistem bilangan biner modern ditemukan oleh Gottfried Wilhelm Leibniz pada abad ke-17. Sistem bilangan ini merupakan dasar dari semua sistem bilangan berbasis digital. Dari sistem biner, kita dapat mengkonversinya ke sistem bilangan Oktal atau Hexadesimal. Sistem ini juga dapat kita sebut dengan istilah bit, atau Binary Digit. Pengelompokan biner dalam komputer selalu berjumlah 8, dengan istilah 1 Byte/bita. Dalam istilah komputer, 1 Byte = 8 bit. Kode-kode rancang bangun komputer, seperti ASCII, American Standard Code for Information Interchange menggunakan sistem peng-kode-an 1 Byte.

20=1

21=2

22=4

23=8

24=16

25=32

26=64

dst

Dalam sistem komunikasi digital modern, dimana data ditransmisikan dalam bentuk bit-bit biner, dibutuhkan sistem yang tahan terhadap noise yang terdapat di kanal transmisi sehingga data yang ditransmisikan tersebut dapat diterima dengan benar. Kesalahan dalam pengiriman atau penerimaan data merupakan permasalahan yang mendasar yang memberikan dampak yang sangat signifikan pada sistem komunikasi.[1] Biner yang biasa dipakai itu ada 8 digit angka dan cuma berisikan angka 1 dan 0, tidak ada angka lainnya.

Perhitungan

Desimal Biner (8 bit)
0 0000 0000
1 0000 0001
2 0000 0010
3 0000 0011
4 0000 0100
5 0000 0101
6 0000 0110
7 0000 0111
8 0000 1000
9 0000 1001
10 0000 1010
11 0000 1011
12 0000 1100
13 0000 1101
14 0000 1110
15 0000 1111
16 0001 0000
17 0001 0001
18 0001 0010
19 0001 0011
20 0001 0100
21 0001 0101
23 0001 0111
24 0001 1000
25 0001 1001
26 0001 1010
27 0001 1011
28 0001 1100
29 0001 1101
30 0001 1110

Danycopyan.png

Ambil satu contoh: 01010101 = .. hitungnya dari kanan, bukan dari kiri, harus di perhatikan lagi untuk nilai 1 yes 0 no, sehingga hanya akan menjumlahkan nilai 1 saja.

Bilangan pertama dari kiri bernilai = 1

Bilangan ke 2 dari kiri = bilangan pertama x 2 = 1 x2 Bilangan ke 3 dari kiri = bilangan ke dua x 2 = 2 x 2 Dst jika binary bernilai 1 maka yes

Perhitungan dalam biner mirip dengan menghitung dalam sistem bilangan lain. Dimulai dengan angka pertama, dan angka selanjutnya. Dalam sistem bilangan desimal, perhitungan mnggunakan angka 0 hingga 9, sedangkan dalam biner hanya menggunakan angka 0 dan 1.

contoh: mengubah bilangan desimal menjadi biner

desimal = 10.

berdasarkan referensi di atas yang mendekati bilangan 10 adalah 8 (23), selanjutnya hasil pengurangan 10-8 = 2 (21). sehingga dapat dijabarkan seperti berikut

10 = (1 x 23) + (0 x 22) + (1 x 21) + (0 x 20).

dari perhitungan di atas bilangan biner dari 10 adalah 1010

dapat juga dengan cara lain yaitu 10 : 2 = 5 sisa 0 (0 akan menjadi angka terakhir dalam bilangan biner), 5(hasil pembagian pertama) : 2 = 2 sisa 1 (1 akan menjadi angka kedua terakhir dalam bilangan biner), 2(hasil pembagian kedua): 2 = 1 sisa 0(0 akan menjadi angka ketiga terakhir dalam bilangan biner), 1 (hasil pembagian ketiga): 2 = 0 sisa 1 (1 akan menjadi angka pertama dalam bilangan biner) karena hasil bagi sudah 0 atau habis, sehingga bilangan biner dari 10 = 1010

atau dengan cara yang singkat

10:2=5(0),

5:2=2(1),

2:2=1(0),

1:2=0(1) sisa hasil bagi dibaca dari belakang menjadi 1010

 

Bilangan Biner dan Desimal

Angka desimal setara dengan bilangan biner, di bawah ini Anda bisa melihat grafik angka biner. 0 dan 1 yang umum untuk kedua biner dan desimal. Nilai desimal 2 di biner diberikan di bawah ini. Angka-angka biner disebut sebagai bit dalam studi komputer.

Cara Penjumlahan Bilangan Biner

Kita ambil sebagai sampel soal yaitu :

1101(2)+1011(2)=……(2)?

1011(2)+0111(2)=…….(2)?

Jawab :

1101(2)

1011(2)

_____+

11000(2)

1+1=0 mempunyai carry(sisa) 1

1+0+1=0 carry 1

1+1+0=0 carry 1

1+1+1=1 carry 1

jadi hasil total adalah : 1111(2)

Cara Pengurangan Bilangan Biner

Mari kita jawab contoh soal pengurangan sistem bilangan biner berikut :

1110(2)-0101(2)=….(2)?

1011(2)-111(2)=….(2)?

Jawab :

1110(2)

0101(2)

_______+

10001(2)

0-1=1 borrow/pinjam sebelah 1

0-0=0 1 jadi nol karena dipinjam 1

1-1=0

1-0=1

Jadi total adalah :  10001(2)

Konversi Bilangan Biner ke Desimal

Ada perbedaan dalam sistem Bilangan Biner dan desimal, dalam komputer data yang disimpan menggunakan bilangan biner, hanya menggunakan nol dan satu untuk mewakili semua data, jadi jika ingin melihat data yang lebih mudah dipahami, maka kita harus mengkonversinya ke bilangan desimal. Berikut ini cara Konversi bilangan Biner ke desimal Menggunakan Notasi Posisi, dikutip dari wikihow.com.

  1. Tuliskan angka biner dan daftar kuadrat 2 dari kanan ke kiri. Misalnya kita ingin mengubah angka biner 100110112 menjadi desimal. Pertama, tuliskan. Kemudian, tuliskan kuadrat 2 dari kanan ke kiri. Mulailah dari 20, yaitu 1. Kenaikan kuadrat satu per satu. Hentikan jika jumlah angka yang ada di daftar sama dengan banyaknya digit angka biner. Contoh angkanya, 10011011, memiliki delapan digit, jadi daftarnya memiliki 8 angka, seperti ini: 128, 64, 32, 16, 8, 4, 2, 1
  2. 2Tuliskan digit angka biner di bawah daftar kuadrat dua. Tuliskan angka 10011011 di bawah angka 128, 64, 32, 16, 8, 4, 2, dan 1 sehingga setiap digit biner memiliki kuadrat angka duanya masing-masing. Angka 1 di kanan angka biner sejajar dengan angka 1 dalam daftar kuadrat 2 dan selanjutnya. Anda juga bisa menuliskan digit biner di atas daftar kuadrat dua, jika Anda lebih memilihnya. Yang penting adalah Anda bisa memasangkannya.
  3. Hubungkan digit dari angka biner dengan daftar kuadrat dua. Buatlah garis, mulai dari kanan, menghubungkan setiap digit angka biner dengan kuadrat dua. Mulailah memberi garis dari digit pertama angka biner dengan kuadrat angka dua pertama dalam daftar yang ada di atasnya. Kemudian, tariklah garis dari digit kedua angka biner ke kuadrat angka dua kedua dalam daftar. Lanjutkan menghubungkan setiap digit dengan kuadrat dua. Hal ini akan membantu Anda dalam membayangkan hubungan antara kedua kumpulan angka.
  4. Tuliskan nilai akhir setiap kuadrat dua. Sisirlah setiap digit angka biner. Jika digitnya adalah 1, tulislah kuadrat dua pasangannya di bawah angka 1 tersebut. Jika digitnya adalah 0, tulislah 0 di bawah angka 0.

Karena 1 berpasangan dengan 1, hasilnya adalah 1. Karena 2 berpasangan dengan 1, hasilnya adalah 2. Karena 4 berpasangan dengan 0, hasilnya adalah 0. Karena 8 berpasangan dengan 1, hasilnya adalah 8, dan karena 16 berpasangan dengan 1, hasilnya adalah 16. 32 berpasangan dengan 0 sehingga hasilnya 0 dan 64 berpasangan dengan 0 sehingga hasilnya adalah 0, sedangkan 128 berpasangan dengan 1 sehingga hasilnya 128.

  1. Tambahkan nilai akhirnya. Sekarang, tambahkan semua angka yang tertulis di bawah digit angka biner. Inilah yang Anda lakukan: 128 + 0 + 0 + 16 + 8 + 0 + 2 + 1 = 155. Ini adalah angka desimal yang setara dengan angka biner 10011011.
  2. Tulislah jawaban Anda dengan subskrip basisnya. Sekarang, Anda harus menulis 15510, untuk menunjukkan bahwa angka itu adalah desimal, yang memiliki kelipatan 10. Semakin Anda terbiasa mengubah biner menjadi desimal, akan lebih mudah untuk Anda mengingat kuadrat dua, dan Anda akan mampu mengubahnya dengan lebih cepat.
  3. Gunakan cara ini untuk mengubah angka biner dengan titik desimal ke dalam bentuk desimal. Anda bisa menggunakan cara ini saat Anda ingin mengubah angka biner seperti 1,12 menjadi desimal. Yang harus Anda lakukan adalah mengetahui bahwa angka di bagian kiri desimal adalah posisi satuan, sedangkan angka di bagian kanan desimal adalah posisi setengah, atau 1 x (1/2).

Angka 1 di bagian kiri titik desimal sama dengan 20, atau 1. Angka 1 di bagian kanan desimal sama dengan 2-1, atau 0,5. Tambahkan 1 dan 0,5 sehingga hasilnya 1,5 yang dapat ditulis 1,12 dalam notasi desimal.

Contoh Soal Konversi Bilangan Biner ke Desimal

Pertanyaan 1: Coba konversi 1101 ke angka desimal?

Jawab:

bilangan biner adalah 1101.

Jadi, 1101 = (1 X 2 3 ) + (1 X 2 2 ) + (0 X 2 1 ) + (1 X 2 0 )

= (1 X 8) + (1 X 4) + (0 X 2) + (1 X 1)

= 8 + 4 + 0 + 1

Jawaban yang benar adalah 13

 

Pertanyaan 2: Coba konversi 1001 ke angka desimal?

Jawab:

bilangan biner adalah 1001.

Jadi, 1001 = (1 X 2 3 ) + (0 X 2 2 ) + (0 X 2 1 ) + (1 X 2 0 )

= (1 X 8) + (0 X 4) + (0 X 2) + (1 X 1)

= 8 + 0 + 0 + 1

Jawaban yang benar adalah 9

 

Pertanyaan 3: Coba konversi 01.011.101 ke angka desimal?

Jawab:

bilangan biner adalah 01011101.

01011101 = (0 X 2 7 ) + (1 X 2 6 ) + (0 X 2 5 ) + (1 X 2 4 ) + (1 X 2 3 ) + (1 X 2 2 ) + (0 X 2 1 ) + (1 X 2 0 )

= (0 X 128) + (1 X 64) + (0 X 32) + (1 X 16) + (1 X 8) + (1 X 4) + (0 X 2) + (1 X 1)

= + 64 + 0 0 + 16 + 8 + 4 + 0 + 1

Jawaban yang benar adalah 93

Pertanyaan 4: Convert 01.100,011 ke desimal jumlah? Jawaban yang benar adalah 12,375

Telah di Baca 1712399 kali